UAVs and Ecology: Research & Technology Futures

DART Symposium

June 21 2019

Maggi Kelly
UC Berkeley
UCANR

UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources

College of Natural Resources

Successful Resource Management Always Starts with a Map

tools data spatial aggregators sensoremote sensing models space-time GIS anal Wistributed computing participatory + crowd platforms **UAV** web mapping/viz field proprietary open people collaboration engagement

Trends in remote sensing

Advantages of UAVs

Talk Outline

Case studies from our work in California

Technological and research futures for UAVs

Trends in Remote Sensing: Continuity

Trends in Remote Sensing: Constellations

planet.

Planet @ @planetlabs · Apr 25

BRB-watching this mesmerizing, endless #cubesat deployment.

Planet Launches 88 micro satellites ("cubesats"), Feb 2017

Planet will image the entire earth, daily, at ~3m resolution

Trends in Remote Sensing: High Spatial & Temporal Resolution

Trends in Remote Sensing: Cloud & HPC Platforms

At the scale of Landsat (30m pixel):

- California → 500M pixels
- China → 10B pixels
- Globe → 800B pixels

High Performance Computing (parallel / distributed / clustered) supports the applications of traditional geospatial methods on big spatial data

Trends in Remote Sensing: Al, Machine Learning, Deep Learning

Machine Learning = algorithms to parse data, learn, and make predictions. The machine is "trained" using large amounts of data and algorithms that give it the ability to learn how to perform tasks.

Trends in Remote Sensing: Geo-collaboratories

So how do these trends relate to UAVs?

Satellite imagery might be too course

lmagery might have been flown at the wrong time of day, or on a cloudy day

Satellite might not carry the sensor of

Flexible,
Focused, &
Precise Data

Drones can deliver *fine spatial resolution* data at *temporal* resolutions defined by the end user

Costs can be very reasonable

Flight can be *controlled*: height, resolution, time of day, repeat schedule

Camera/platform can be chosen by user

Products include high resolution imagery, point cloud and DSM

Engaging, *hands-on* technology

Advantages: Spatial Resolution

RGB camera 2cm GSD

DAP: Digital Aerial
Photogrammetry: "Leafscale resolution" Todd
Dawson, UCB

Advantages: Mission Planning

Programmable flight paths are an advantage over manually piloted UASs: they allow for repeat monitoring because they collect measurements over the same configuration multiple times

Advantages: Multiple Sensors

\$700 RGB \$3,500 Multispectral \$9,000 Thermal \$50,000 Lidar

Advantages: Multiple Products

Repeatable, through time

IGIS UAV Work in California

Our Mission:

 Collect and analyze drone data on agricultural land to reveal and facilitate improved production practices

- Map forests, rangelands, grasslands and wetlands using drones, giving managers tools needed to make smart decisions.
- We have flown ~30 missions (total 25 km²) on and around the network of research properties in California

RGB

DJI Phantom + RGB GoPro Camera + Hangar DJI M100 quadcopter UAV + Zenmuse X3

MultiSpectral

SenseFly eBee + Parrot Sequoia multispectral camera

DJI Inspire 1 + Zenmuse Thermal XT

Thermal

LiDAR

Light Detection & Ranging
Discrete return Optech GEMINI Airborne
Laser Terrain Mapper (ALTM)

RGB Sensor: Habitat Recovery Post Fire

Example of Hangar 360° Imagery

The River Fire began 7-27-18 in Hopland. By the time it was contained (as part of the Mendocino Complex), it had burned 19,797 ha (48,920 acres). It is now the largest California wildfire in modern history.

We have been capturing the site with drone imagery: 360° imagery and RGB/Multispectral high res imagery.

Testing the ability to differential water treatment (full watering, restricted water) on Almond orchards

Li et al. 2012. A new method for segmenting individual trees from the lidar point cloud. Photogrammetric Engineering and Remote Sensing

Jakubowski et al. 2013. Delineating individual trees from lidar data: a comparison of vector- and raster-based segmentation approaches. *Remote Sensing*

Challenges: UAV Operations

UAVs give us flexible, focused, & precise data on demand, but there are challenges

Data

Geo-registration
Storage
Processing time
Sharing

Upkeep & Maintenance

Connectivity

Obsolescence

Accidents

Insurance

Workflows

Software: proprietary & open

Linking with other RS tools

Cloud processing

Flight

Flight skills

Safety

Regulation

Training

Drone Mission Data Sizes & Processing Time

Hardware & Equipment

Maintaining a drone fleet requires considerable upkeep and continual maintenance; and new improved models come out all the time.

It's always good to have backups, and to plan for accidents

Cloud Storage & Processing

Workflows

Flight

'My fingers were almost cut off by a drone'

⊙ 23 July 2017 | UK

DroneCamp: Continual training for flight skills, safety and regulation

UAV Technology Futures

Sensors

New developments in multispectral, hyperspectral, Lidar, thermal, fluorescence sensors

Defense

Technology to detect, track, and disrupt unwanted UAVs

Payloads & Mobility

UAVs for delivery; for sampling; for application (e.g. spraying); Aquatic – Aerial UAVs

Swarms

Technology for swarm autonomy and reliability UAV-to-UAV communication via cellular mobile wireless infrastructure

UAV Research Frontiers

Sensor calibration and benchmarking

Sensor Benchmarking: How to use, when to use, how to fuse

Development of new indices and measures

Spectral indices
Rate of change measures
Combination metrics
Leaf-scale and within-canopy measures

Digital Aerial
Photogrammetry
(DAP) vs LiDAR

Point cloud vs Lidar: across scale / across species / across density

Cloud-based storage, retrieval, and processing

Enabling fast processing and data sharing

Sensor calibration and benchmarking

Fluorescence

~1% of solar energy captured by plants is re-emitted by chlorophyll as fluorescence Requires very narrow spectral bands: ~0.02-0.05nm

When plants are exposed to sunlight, they reflect, transmit, and absorb light. In addition to R, A, T, plants reemit light = fluorescence.

The amount of fluorescence emission is a direct indicator of the photosynthetic activity of a plant.

Fluorescence emission from photosystems I and II (PSI, PSII)

http://terraluma.net

Jorge, Vallbé, and Soler. 2019. Detection of irrigation inhomogeneities in an olive grove using the NDRE vegetation index obtained from UAV images. European Journal of Remote Sensing 52(1): 169-177

Leaf-scale Resolution

Digital Aerial Photography

Terrestrial LiDAR

UAV Grand Challenges: The 3Ss

Fine to broad-scale in space and time; e.g. links with regional and global models

Sampling

UAV as sampling tool: Strategic use of UAVs to help scaling research; e.g.

Lidar for biomass

Synergy

Cloud storage, retrieval and processing
Interoperability and sharing
FAIR drone data (Findable, Accessible, Interoperable, Reusable)

UAV Grand Challenges: The 3Ss

Landsat 30m

Sentinel 10-20m

WorldView3 0.3-1.2m

Planet RapidEye 5m

Planet SkySat 0.8m

New Sensors:

Global Ecosystem Dynamics Investigation (GEDI): High resolution laser ranging of Earth's forests and topography

New Sensors:

ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS)

Mapping for Impact

Many of the challenges we face today around food, water, equity, energy, invasive species, fire, climate change, conservation – are complex, require a spatial approach and impact diverse public groups.

Addressing these challenges requires innovative data collection, data synthesis, novel analytical tools, and increased communication and cooperation between scientists and public.

data people tools

Drones are part of our 21st century scientific toolkit

Thank You

Maggi Kelly

Professor and CE Specialist, UC Berkeley

Faculty Director, Geospatial Innovation Facility (GIF)

Director ANR Statewide Program in Informatics and GIS (IGIS)

Email: maggi@berkeley.edu

Twitter: @nmaggikelly

http://kellylab.berkeley.edu

http://gif.berkeley.edu

http://igis.ucanr.edu/